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UNCERTAIN SYSTEM MODELING OF SNS RF CONTROL SYSTEM *
  Sung-Il Kwon, Amy Regan, Yi-Ming Wang, and  Michael Lynch  

LANL, Los Alamos, NM  87545 USA

Abstract—This paper addresses the modeling problem of
the linear accelerator RF system for SNS. The cascade of
the klystron and the cavity is modeled as a nominal
system.  In the real world, high voltage power supply
ripple, Lorentz Force Detuning, microphonics, cavity RF
parameter perturbations, distortions in RF components,
and loop time delay imperfection exist inevitably, which
must be analyzed. The analysis is based on the accurate
modeling of the disturbances and uncertainties. In this
paper, a modern control theory is applied for modeling the
disturbances, uncertainties, and for analyzing the closed
loop system robust performance.

                       1  INTRODUCTION
      The Spallation Neutron Source (SNS) Linac to be
built at Oak Ridge National Laboratory (ORNL) consists
of a combination of low energy normal conducting (NC)
accelerating structures as well as higher energy
superconducting RF (SRF) structures. The purpose of RF
system modeling is to investigate the various cavity
configurations in order to provide the correct requirements
for the control system hardware and to specify RF
components; verify system design and performance
objectives; optimize control parameters; and to provide
further insight into the RF control system operation.
     In a linear accelerator RF system, there are several
sources of the uncertainties and the disturbances.  For a
klystron, the major disturbance source is the high voltage
power supply (HVPS) ripple. This disturbance affects
both the output amplitude and the output phase of a
klystron. For a SRF cavity, the major disturbances on the
cavity characteristics are the Lorentz Force Detuning and
the microphonics. Also, the changes of RF parameters
should be investigated and be included in the model.  In
the low level RF control system, many RF components
are used and these components are not ideal and have their
own uncertainties and latencies. Also, feedback loop time
delay, waveguide time delay, and other time delays are
modeled.   All of these uncertainties, disturbances, and
time delays, are modeled as either multiplicative
uncertainties, additive uncertainties, or exogenous
disturbances [1].
    For the perturbed system model, low level RF
controllers are synthesized by applying modern control
theory such as 2H control, ×H  control, loop shaping

control, and ×H  based PI control. Closed loop system

stability and performance are analyzed.
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              2  KLYSTRON MODEL
     A klystron can be expressed as the cascade of the linear
subsystem and the nonlinear output subsystem. The linear
subsystem represents the 3dB bandwidth of the klystron
and the constant gain. The nonlinear output subsystem
represents the amplitude saturation curve and the phase
saturation curve of the klystron.   The nonlinear model of
a klystron depicts the nonlinear amplitude saturation curve
and the nonlinear phase saturation curve of a klystron.
However, the nonlinearity hinders the application of the
modern linear control theory both for analysis and
synthesis. In order to achieve efficient analysis and
synthesis for a klystron, and for the cascade of the
klystron and cavity in the linear accelerator, a linear
klystron model around each operating point is required
where the operating point is determined by the required
power of the cavity.  A linear parameter varying klystron
model can be obtained when the amplitude and phase
saturation curves are represented by analytic functions,
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coefficients and an analytic function is introduced to
express the operating point trajectory. The linear
parameter varying klystron model can catch the transient
behaviors in the period of cavity filling and in the period
of beam loading. In order for that to be possible, it is
necessary to continuously measure or estimate the
trajectory of the output point ),( outoutV θ  of a klystron,

which is a difficult task.  Instead, an operating point dA

is considered and the transfer function matrix model is
obtained. The linearized klystron model is given by the
following 2nd order system,

      ( ) kkdkko BAsIACsG 1)()( −−= ,            (1)
where dA  is the desired operating input voltage for the
normalized amplitude saturation curve obtained from the
desired operating output of a klystron ),( d

out
d
outV θ . The

model (1), is a hybrid model since the input-state equation
is adopted from a linear parameter varying model and the
state-output equation is adopted from a Lyapunov
linearization. The model (1) depicts a klystron with a
wider dynamics area than a Lyapunov linearization but a
narrower area than a linear parameter varying model.

      3  PERTURBED KLYSTRON MODEL
     The major perturbation of a klystron’s output is due to
the high voltage power supply (HVPS) ripple. HVPS



ripple changes both the amplitude and the phase of the
klystron output.  This results in perturbation of both the
In-phase and Quadrature outputs of the klystron. Hence, a
perturbed klystron due to HVPS ripple can be represented
by a nominal system with exogenous disturbance. In this
case, a proper transfer matrix from the HVPS ripple to the
klystron output should be obtained.
     The perturbed output voltage due to the HVPS ripple

is expressed in terms of ( ) 25.11 RAA Ap ∆+=  where A∆  is

the amplitude perturbation in percentage and ∑R ,
1≤R ,  is the normalized ripple signal. The effect of

HVPS ripple on the output phase of the klystron is
described by two terms: the first is the perturbed output of

the phase saturation curve due to PA , 
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second is the direct additive phase perturbation, RP∆ .

Then the perturbed klystron model is defined as an additive
uncertainty model:
     ),,()()()()( PARRipplekokokP AsWsGsGSG ∆∆∆+= (2)

where )(sWRipple is a frequency-shaping weighting function

matrix and R∆ is a uncertainty matrix satisfying
1

2
≤∆ R .

                  4  SRF CAVITY MODEL
The modeling of a SRF cavity is based on the

assumption that the RF generator and the cavity are
connected by a transformer. The equivalent circuit of the
cavity is transformed to the equivalent circuit of a RF
generator with a transmission line (waveguide) and the
model is obtained [2]. The minimal realization of a SRF
cavity is given by the second order system

   )()()()()( sIsGsUsGsY Bc += (3)

where
   zLzzc BAsICsG 1))(()( −∆−= ω , (4)

   zILzzB BAsICsG 1))(()( −∆−= ω . (5)

Meanwhile, the Lorentz Force Detuning is written as      
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Equation (3) shows that from the perspective of a cavity,
beam current is an exogenous disturbance. Also, the
coefficients of the transfer matrix are dependent upon the
Lorentz Force Detuning   Lω∆

      5  PERTURBED SRF CAVITY MODEL
The SRF cavity model given by (5) is a perturbed

model where the perturbation is due to the Lorentz Force
Detuning.  The nominal SRF cavity model is given when

Lω∆  is  zero. Microphonics, MCPω∆  contribute a similar

perturbation
Another dominant perturbation in the SRF cavity

model is due to the external Q, extQ .  Since exto QQ >>  in

the SRF cavity, extL QQ ∪  and the coupling factor β

(β >>1) is given by 
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. Hence, the

perturbation of extQ  is equivalently described by the

inverse of the perturbation of the coupling factorβ . Let

oβ  represent the nominal value of the coupling factor.

Then a multiplicative perturbation of β  is expressed as

                     )1( βδββ += o        (7)

where 0.1≤βδ  represents the degree of the perturbation.

     The input-output SRF cavity model with perturbation
can be represented by a linear fractional transformation
(LFT) [3]. First, let the input-output relation of the
perturbed system be expressed as a transfer function
matrix SRFG .

    =
u

w
G

y

v
SRF , (8)

    vw SRF∆= ,  (9)

          [ ]{ }∑∆∆=∆ iMCPLSRF IIIdiag δωωδβ :,, 222

            =
1112

2122

SRFSRF

SRFSRF
SRF GG

GG
G . (10)

The upper linear fractional transformation (LFT)
representation of a perturbed SRF cavity is 

uGFy SRFSRFU ),( ∆=  (11)
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This is indicated in Figure 1.

Figure 1: Perturbed SRF cavity LFT representation

              6  OTHER UNCERTAINTIES
The analog signals in the cavity are fed back to the

control system digital signal processor for several
purposes such as low level RF control signal generation,
data display, and data storage.  RF components such as the
RF switch, directional coupler, mixer, I/Q demodulator,
preamplifier, bandpass filter, and transformer comprise
that feedback loop. Since these components are not
perfect, there are amplitude distortions and phase
distortions.  These distortions are characterized in the
frequency domain. Meanwhile, there exist uncertainties in
the forward path from the digital signal processor output
to the klystron.  In this forward loop, RF components
such as the I/Q modulator, low power amplifier, bandpass
filter, medium power amplifier, directional coupler, and
switch are placed and these components inevitably
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generate amplitude distortions and phase distortions. Also,
there is significant time delay due to the feedback cable
delay and certain RF components (e.g.: FIR filter).The
uncertainty in the RF components in the feedback loop,
forward loop, and the time delay are modeled as the
multiplicative uncertainty
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where A∆  is the multiplicative amplitude pertubation,

θ∆ is the additive phase perturbation, )(sW  is the
weighting function matrix, and ),( θ∆∆∆ A  is the

uncertainty block satisfying  1),( ≤∆∆∆
×θA ,  ω∀ .

           7  APPLICATIONS
The perturbed klystron, cavity, and other

perturbations are integrated together and result in a
perturbed open loop system.  The effect of the
perturbation on the closed loop system performance is
analyzed with a PI feedback controller given by
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      First, HVPS ripple effect is analyzed [1]. The
magnitude response from HVPS ripple to the tracking
error when amplitude ripple is 1.2% and the phase ripple
is 11.75 degrees is shown in figure 2. Figure 2 shows that
there is an upper limit from below and lower limit from
above in the frequency of the HVPS ripple which
guarantees the robust performance.  Figure 2 shows that
the ripple of the frequency range [5903.9 Hz  35966 Hz]
cannot be rejected with the given PI controller.
     When a system is perturbed, additional energy should
be provided by an energy source. In the frequency
domain, the additional power can be estimated by the
magnitude response for the worst case perturbation.  The
LFT representation of a perturbed system or the standard
form of a multiplicative uncertainty are suitable tools for
energy interpretation. For a stable transfer matrix )(sG ,

the ×H  norm is defined as the input/output RMS energy

gain,  i.e.,  for 2
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where 2L  is the space of signals with finite energy .  For

a fixed frequency 1ω , the maximum singular value of
)( 1ωjG  is the largest energy gain at the frequency 1ω .

In order to calculate the power margin required for the
Lorentz Force Detuning whose value at the end of 1.3

secm  RF pulse is –165 Hz (68.75% of )1.142.1 2↔− ,( )),((max SRFSRFU jGF ∆ωσ  is calculated with
[ ]{ }∑∆=∆ iLSRF Idiag δω :0,,0 222 , which is shown in

figure 3. The nominal system’s singular value is 1.9362,
which changes to 1.7562 due to the system perturbation
resulting from  the Lorentz Force Detuning (-165 Hz). In

order to recover to its nominal value, 9.3 % additional
energy is necessary at low frequency.  In the case of the
closed loop system, the additional energy is scaled by
0.5225 (as given in figure 4), and the additional energy is
4.9% [1], [4].

Figure 2: Transfer Matrix from the scaled High Voltage Power Supply
(HVPS) ripple to the tracking.

Figure 3: Maximum singular value plot of the open loop nominal system
and the open loop perturbed system for a SRF cavity.

Figure 4: Maximum singular value plot of the scaling transfer matrix
)()( sSsC : )(sC  is the transfer matrix of the PI feedback controller

and )(sS  is the sensitivity matrix.
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